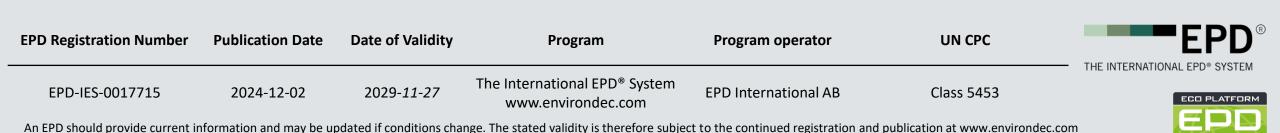
Environmental Product Declaration

In accordance with ISO 14025:2006 & EN 15804:2012+A2:2019/AC: 2021


VERIFIED

Bituminous membranes for waterproofing applications (all types)

by Alfa Alfa Energy S.A.

(EPD of multiple products based on worst-case results)

A Comprehensive list of the products included in the EPD can be found on page 6

PROGRAM INFORMATION

PROGRAM OPERATOR
EPD International AB

Address: Box 210 60. SE-100 31 Stockholm. Sweden Website: www.environdec.com Email Address: info@environdec.com

EPD OWNER Alfa Alfa Energy S.A.

Bituminous, Chemical & Waterproofing Materials Industry

Production Site : Paralia Aspropyrgou, 19300 Aspropyrgos Attikis- Greece Tel: (+30) 210 5518700 Website: www.esha.gr Email address: info@esha.gr

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

Product Category Rules (PCR)	CEN Standard EN 15804 serves as the Core Product Category Rules (PCR)
	PCR 2019:14 Construction products version 1.3.4
PCR Review was conducted by:	The technical Committee of the International EPD [®] System. See www.environdec.com/TC for a list of members. Review chairs: Claudia A. Peña. University of Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.
LCA accountability:	SustChem Technical Consulting S.A. www.sustchem.gr
Third-party verification Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:	Business Quality Verification P.C. Approved certification body accountable for the third-party verification www.bqv.gr – <u>info@bqv.gr</u>
The certification body is accredited by:	Hellenic Accreditation System ESYD with accreditation number 1218
Procedure for follow-up of data during EPD validity involves third-party verifier:	Yes ✓ No

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

About Us

Alfa Alfa Energy S.A. produces and distributes to the Greek market and abroad, under the ESHA® trademark, a wide range of bituminous, petroleum and other chemical products, for waterproofing, thermal insulation and protection of civil engineering works, as well as for application in road building works.

Founded in 1962 in Aspropyrgos Attica Greece, the company has significantly contributed for more than 60 years to setting the standards of waterproofing in civil engineering and road building projects.

Esha products have been widely accepted by planners, architects, builders and the private and public sector for so many years that have become synonymous to reliability & high added-value.

Esha Brand occupies today the leading position in the Greek market of bituminous waterproofing products.

Product Portfolio

Nowadays, Alfa Alfa Energy S.A. produces and distributes an extensive range of highquality products, in the manufacturing plant of Aspropyrgos, falling into the presented main product categories:

Quality and Environmental Commitment

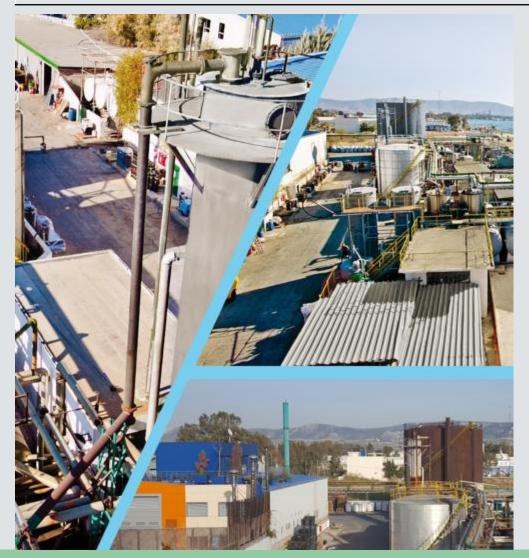
Alfa Alfa Energy S.A. is certified with:

- □ ISO 9001:2015 Quality Management System and
- □ ISO 14001:2015 Environmental Management System

Our products are manufactured according to the latest European Norms & Requirements and are marked with CE.

Besides, all our products are certified and approved by independent labs and organizations. There is also a very large database of application projects in Greece and abroad which testify ESHA products' supreme quality and long-life expectance.

Alfa Alfa Energy is a founding member of the company "Rewarding Recycling S.A." that is the approved commission for the establishment and function of the programs "Rewarding Alternative Management" & "Packages and Wastes Recycling in Greece".


- Bituminous membranes
- Plastic Membranes
- Under-tile waterproofing
- Waterproofing Coatings
- Joint Sealants
- Waterproofing accessories

- Cementitious Waterproofing products
- Thermal Insulation
- Green Roofs
- Drainage Membranes-Geotextiles
- Road Building Materials
- External Thermal Insulation

COMPANY PROFILE

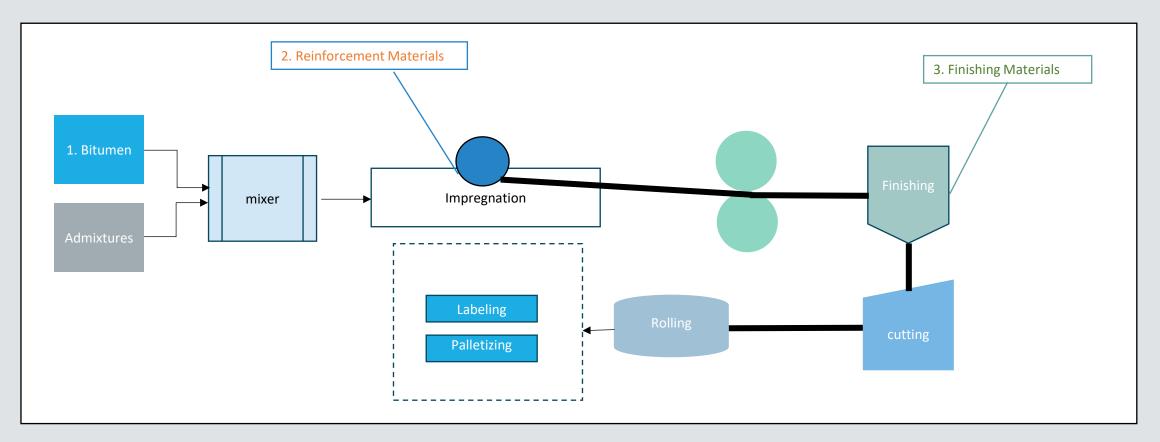
PRODUCT INFORMATION- Composition

Bituminous membranes, are composed by three components:

- 1. Bituminous mixture
- 2. Reinforcement Material
- 3. Finishing Materials

The various products manufactured by Alfa Alfa Energy S.A. differ:

- By type of polymers used to modify bitumen during bituminous mixture production, providing both SBS-type elastomeric membranes and APP-type plastomeric membranes.
- By the composition of the raw materials introduced in the bituminous mixture production offering a wide range of alternatives, based on the intended use.
- By the type of reinforcement material which can be either polyester fiber cloth, composite glass grit or glass fiber sheet.
- By the type of finishing materials which can be a combination of polyethylene/polyethylene films, polyethylene film/mineral granules or polyethylene film/aluminum foil
- By the final weight/density of the bituminous membrane, ranging from 2-6 kg.m².


All these variables are adjusted based on the desired properties requested by the customers.

The selection of the appropriate combination of bituminous mixture, reinforcement, surface finishing and weight/thickness of the membrane offers a variety of applications and high-quality solutions in every problem of waterproofing.

PRODUCT INFORMATION – Production Process

This EPD covers the whole range of waterproofing bituminous membranes manufactured by Alfa Alfa Energy S.A.

Although there are many variations, depending on the intended use, the basic steps of the production process are presented in the following figure:

PRODUCT INFORMATION-Variables

Based on the available combinations, there can be identified the following bituminous membrane systems, manufactured by Alfa Alfa Energy, divided in two categories based on modifying polymer type.

SBS-type bituminous membranes

	Unit	EshaDIEN	EshaDIEN & Eshadien Ultra White			aELASTA aELASTA		EshaFIN			EshaSTICK & Ultra White		
Available Finishes	-	РР	PG	P-Al	РР	PG	P-Al	РР	PG	P-Al	РР	PG	P-Al
Available Reinforcements	-		Polyester Fiber Cloth/ Composite glass grit / Glass Fiber Sheet										
Weight (maximum)	kg.m ²	5	6	4.5	5	6	4.5	5	6	4.5	5	6	4.5
Dimensions (width x length)	m x m		1x10										

APP-type bituminous membranes

	Unit	EshaDURO		EshaGUM	& Antiroot B	5 Esl	haPROOF		Abbreviations explanation:		
Available Finishes	-	РР	PG	РР	PG	РР	PG		·		
								P	Polyethylene-Polyethylene film		
Available Reinforcements	-	Polyes	Ster Fiber C	ioth/ Comp	osite glass gri	t / Glass F	iber Sneet		~	Polyethylene film-Mineral Granules	
Weight (maximum)	kg.m ²	5	5	5	5	5	5	Р	G		
Dimensions (width x length)	m x m			1x10 P-Al Polye					Polyethylene film- Aluminum Foil		

PRODUCT INFORMATION-Technical Data – ESHAGUM & ANTIROOT B5

Characteristics	Standard	т			Nominal values			Unit
			Glass Fleece	Nonwoven polyester	Polyester combined with reinforcing glass yarns	Spun Bond Polyester (SP)	Spun Bond Polyester (SP250)	
Length	EN 1848-1		10	10	10	10	10	m
Width	EN 1848-1		1	1	1	1	1	m
Upper surface covering	-		PE film/ mineral granules	PE film/ mineral granules	PE film/ mineral granules	PE film/ mineral granules	PE film/ mineral granules	
Bottom surface covering	-		PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	
Thickness	EN 1849-1	±0,2	2.5-5	2.5-5	2.5-5	2.5-5	2.5-5	mm
Weight	EN 1849-1	±10%	3-6	3-6	3-6	3-6	3-6	kg/m ²
Туре	-		Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	
Softening Point	EN 1427	≥	148	148	148	148	148	°C
Penetration at 25 °C	EN 1426	± 5	25	25	25	25	25	dmm
Antiroot Agent			-	-	-	-	-	
Tensile strength L/T	EN 12311-1	± 20%	300/200	450/300	550/420	900/650	1100/900	N/50mm
Elongation L/T		± 15%	2/2	30/50	40/55	50/60	50/60	%
Tear resistance L/T	ASTM D4073- 94	± 15%	100/200	200/350	300/400	350/450	600/700	N
Static puncture resistance (concrete)	EN 12730/ UEAtc MOAT27		L2 (7-15)	L3 (15-25)	L3 (15-25)	L3 (15-25)	L4 (>25)	kg
Dynamic puncture resistance (concrete)	EN 12691/ UEAtc MOAT27		I3 (Φ10)	ІЗ (Ф8)	I3 (Φ8)	ІЗ (Ф8)	I3 (Φ8)	mm
Flexibility to low temperatures	EN 1109	±3	-10	-10	-10	-10	-10	°C
Water tightness (72h, 2 bar)	UEAtc/EN 1928				Successfully Passed	I		
Vapor permeability coefficient	EN 1931	≥	20000	20000	20000	20000	20000	
Heat resistance	EN 1110	≤	130	130	130	130	130	°C
Reaction to fire	EN 13501-1		F	F	F	F	F	
Dimensional stability L/T	EN 1107-1	≤	-0.1/+0.1	-0.15/+0.1	-0.15/+0.1	-0.4/+0.3	-0.4/+0.3	%
Thermal conductivity			0.2	0.2	0.2	0.2	0.2	W/mK

PRODUCT INFORMATION-Technical Data - ESHAPROOF

Characteristics	Standard	T		Nominal values			Unit
			Glass Fleece	Nonwoven polyester	Polyester combined with reinforcing glass yarns	Spun Bond Polyester (SP)	
Length	EN 1848-1		10	10	10	10	m
Width	EN 1848-1		1	1	1	1	m
Upper surface covering	-		PE film/mineral granules	PE film/mineral granules	PE film/mineral granules	PE film/mineral granules	
Bottom surface covering	-		PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	
Thickness	EN 1849-1	±0,2	2.5-5	2.5-5	2.5-5	2.5-5	mm
Weight	EN 1849-1	±10%	3-6	3-6	3-6	3-6	kg/m ²
Туре	-		Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	
Softening Point	EN 1427	≥	145	145	145	145	°C
Penetration at 25 °C	EN 1426	± 5	25	25	25	25	dmm
Antiroot Agent			-	-	-	-	
Tensile strength L/T	EN 12311-1	± 20%	300/200	450/300	550/400	900/650	N/50mm
Elongation L/T	EN 12311-1	± 15%	2/2	30/50	40/55	45/55	%
Tear resistance L/T	ASTM D4073-94	± 15%	100/200	200/350	280/400	340/440	Ν
Static puncture resistance (concrete)	EN 12730/ UEAtc MOAT27		L2 (7-15)	L3 (15-25)	L3 (15-25)	L3 (15-25)	kg
Dynamic puncture resistance (concrete)	EN 12691/ UEAtc MOAT27		I3 (Φ 10)	I3 (Ф 8)	I3 (Φ 8)	I3 (Φ 8)	mm
Flexibility to low tempera-tures	EN 1109	± 5	-7	-7	-7	-7	°C
Water tightness (72h, 2 bar)	UEAtc/EN 1928			Succes	ssfully Passed		
Vapor permeability coef- ficient	EN 1931	≥	20000	20000	20000	20000	
Heat resistance	EN 1110	≤	120	120	120	120	°C
Reaction to fire	EN 13501-1		F	F	F	F	
Dimensional stability L/T	EN 1107-1	≤	-0.1/+0.1	-0.15/+0.1	-0.15/+0.1	-0.4/ +0.3	%
Thermal conductivity			0.2	0.2	0.2	0.2	W/mK

PRODUCT INFORMATION-Technical Data - ESHADURO

Characteristics	Standard	T			Nominal values			Unit
			Glass Fleece	Glass mat combined with polyester	Nonwoven polyester	Polyester combined with reinforcing glass yarns	Spun Bond Polyester (SP)	
Length	EN 1848-1	± 0.02	8 or 10	8 or 10	8 or 10	8 or 10	8 or 10	m
Width	EN 1848-1		1	1	1	1	1	m
Upper surface covering	-		PE film/mineral granules/ Quartz sand	PE film/mineral granules/ Quartz sand	PE film/mineral granules/ Quartz sand	PE film/mineral granules/ Quartz sand	PE film/mineral granules	
Bottom surface covering	-		PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	PE film	
Thickness	EN 1849-1	± 0.2	2.5-5	2.5-5	2.5-5	2.5-5	2.5-5	mm
Weight	EN 1849-1	±10%	3-6	3-6	3-6	3-6	3-6	kg/m ²
Туре	-		Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	Plastomeric (APP)	
Softening Point	EN 1427	≥	145	145	145	145	145	°C
Penetration at 25 °C	EN 1426	± 5	25	25	25	25	25	dmm
Antiroot Agent			-	-	-	-	-	
Tensile strength L/T	EN 12311-1	± 20%	300/200	640/600	450/300	550/400	850/650	N/50m m
Elongation L/T	EN 12311-1	± 15%	2/2	4/4	30/50	40/55	45/55	%
Tear resistance L/T	ASTM D4073-94	± 15%	100/200	350/350	200/350	280/400	320/420	Ν
Static puncture resis- tance (concrete)	EN 12730/UEAtc MOAT27		L2 (7-15)	L2 (7-15)	L3 (15-25)	L3 (15-25)	L3 (15-25)	kg
Dynamic puncture resistance (concrete)	EN 12691/UEAtc MOAT27		I3 (Φ 10)	I3 (Φ 10)	I3 (Ф 8)	I3 (Ф 8)	I3 (Ф 8)	mm
Flexibility to low temperatures	EN 1109	± 5	-5	-5	-5	-5	-5	°C
Water tightness (72h, 2 bar)	UEAtc/EN 1928				Successfully Passed			
Vapor permeability coefficient	EN 1931	≥	20000	20000	20000	20000	20000	
Heat resistance	EN 1110	≤	115	115	115	115	115	°C
Reaction to fire	EN 13501-1		F	F	F	F	F	
Dimensional stability L/T	EN 1107-1	≤	-0.1/+0.1	-0.1/+0.1	-0.15/+0.1	-0.15/+0.1	-0.4/+0.3	%
Thermal conductivity			0.2	0.2	0.2	0.2	0.2	W/mK

PRODUCT INFORMATION-Technical Data – ESHASTICK PP

Characteristics	Standard	Т		Nominal values		
Bituminous Compound			Elastomeric (SBS) bitumen w	ith self adhesive pr	operties	
Length	EN 1849-1	±0,02	10-:	20		m
Width	EN 1849-1	±0,02	1			m
Top Surface Finish			PE F			
Bottom Surface Finish			Silicone	Release PE film	_	
Reinforcement			High stability Polyester	Glass Fleece	Glass Mat	
Weight	EN 1849-1	±10%	1-4	Kg/m ²		
Softening Point	EN 1427	≥	10	°C		
Penetration at 25 °C	EN 1426		75-9	dmm		
Tensile strength L/T	EN 12311-1	± 20%	450/300 300/200 600/600		600/600	N/50mm
Elongation L/T	EN 12311-1	± 15%	30/40 2/2 4/4		4/4	%
Tear resistance L/T	ASTM D4073-94	± 15%	200/300	100/100	300/300	Ν
Static puncture resistance (concrete)	EN 12730/UEAtc MOAT27		L3 (15-25)	L2 (7-15)		Kg
Dynamic puncture resistance (concrete)	EN 12691/UEAtc MOAT27		I3 (Ф 8)	I3 (Φ 10)		mm
Flexibility to low temperatures	EN 1109	± 5	-22	2		°C
Heat Resistance	EN 1110	<	10	0		°C
Water tightness (60 KPa, 24 h)	UEAtc/EN 1928 method - 1		Pass			
Vapor permeability coefficient	EN 1931	>	200			
Reaction to fire	EN 13501-1		F			
Dimensional stability L/T	EN 1107-1	≤	-0.1 /	+0.1		%

PRODUCT INFORMATION-Technical Data – ESHASTICK PG

Characteristics	Standard	Т	N	ominal values	
Bituminous Compound			Elastomeric (SBS) bitumen w	rith self adhesive properties	
Length	EN 1849-1	±0,1	10	0	m
Width	EN 1849-1	±0,02	1		m
Top Surface Finish			Coloured	Mineral Chipping	
Bottom Surface Finish			Silicone	Release PE film	
Reinforcement			High stability Polyester Glass Fleece		
Weight	EN 1849-1	±10%	3-/	4	Kg/m ²
Softening Point	EN 1427	± 5	10	5	°C
Penetration at 25 °C	EN 1426	± 10	88	5	dmm
Elastic Recovery of bituminous binder	EN 13398	2	90	%	
Elastic Recovery of bituminous binder after oxidative aging	EN 13398	2	90)	%
Tensile strength L/T	EN 12311-1	± 20%	450/300	300/200	N/50mm
Elongation L/T	EN 12311-1	± 15%	30/40	2/2	%
Tear resistance L/T	ASTM D4073-94	± 15%	200/300	100/100	Ν
Static puncture resistance (concrete)	EN 12730/UEAtc MOAT27		L3 (15-25)	L2 (7-15)	Kg
Dynamic puncture resistance (concrete)	EN 12691/UEAtc MOAT27		I3 (Φ 10)	I3 (Φ 10)	mm
Flexibility to low temperatures	EN 1109	± 5	-2	0	°C
Heat Resistance	EN 1110	<	10	0	°C
Water tightness (60 KPa, 24 h)	UEAtc/EN 1928 method - 1		Pass		
Vapor permeability coefficient	EN 1931	>	200		
Reaction to fire	EN 13501-1		F		
Dimensional stability L/T	EN 1107-1	≤	-0.15 / +0.15	-0.1 / +0.1	%

PRODUCT INFORMATION-Technical Data – ESHASTICK P-AL & ESHASTIC ULTRA WHITE

Characteristics	Standards	Т		Nominal Valu	ies	Unit	
Bituminous Compound			Elastomeric (SB	S) bitumen with self a	dhesive properties		
Length	EN 1848-1	±0,1		10		m	
Width	EN 1848-1	±0,02		1		m	
Top Surface Finish				Aluminium foil			
Bottom Surface Finish				Silicone Release Pl	E film		
Reinforcement			Nonwoven polyester	Nonwoven polyester Glass Mat Glass Fleece			
Weight	EN 1849-1			3-5			
Softening Point	EN 1427	± 5		105			
Penetration at 25 °C	EN 1426	± 10		dmm			
Elastic recovery of the bituminous binder of the membrane	EN 13398	≥		%			
Elastic recovery after the oxidative aging, EN 12607-1	EN 13398	≥			%		
Tensile strength L/T	EN 12311-1	± 20%	450/300	600/600	300/200	N/50mm	
Elongation L/T	EN 12311-1	± 15%	30/40	4/4	2/2	%	
Tear resistance L/T	ASTM D4073-94	± 15%	200/300	350/350	100/100	Ν	
Static puncture resistance (concrete)	EN 12730/UEAtc MOAT27		L3 (15-25)	L3 (15-25)	L3 (15-25)	Kg	
Dynamic puncture resistance (concrete)	EN 12691/UEAtc MOAT27		I3 (Ф 8)	I3 (Φ 10)	I3 (Φ 10)	mm	
Flexibility to low temperatures	EN 1109	± 5		-20		°C	
Heat Resistance	EN 1110	<		100		°C	
Dimensional stability L/T	EN 1107-1	≤	-0.15 / +0.15	-0.15 / +0.15	-0.1 / +0.1	%	

PRODUCT INFORMATION-Technical Data – ESHADIEN

Characteristics	Standard	Т			Nom	inal values			Unit
			Glass Fleece	Glass mat combined with polyester	Nonwoven polyester	Polyester combined with glass yarns	Spun Bond Polyester (SP-180)	Spun Bond Polyester (SP- 250)	
Visible defects					No defect	ts			
Length	EN 1848-1	±0,2%	8 or 10	8 or 10	8 or 10	8 or 10	8 or 10	8 or 10	m
Width	EN 1848-1		1	1	1	1	1	1	m
Straightness					Fulfills require				
Upper surface covering	-				PE film/mineral gra	anules/ aluminium fo	il		
Bottom surface covering	-				PE film / Quart	z sand			
Thickness	EN 1849-1	±0,2	2.5-5	2.5-5	2.5-5	2.5-5	2.5-5	2.5-5	mm
Weight	EN 1849-1	±10%	3-6	3-6	3-6	3-6	3-6	3-6	kg/m ²
Туре	-				Elastomeric (SBS)			
Softening Point	EN 1427	± 10	130	130	130	130	130	130	°C
Penetration at 25 °C	EN 1426	± 5	35	35	35	35	35	35	dmm
Elastic recovery of the bituminous binder of the membrane	EN 13398	≥	90	90	90	90	90	90	%
Elastic recovery after the oxidative aging, EN 12607-1	EN 13398	≥	90	90	90	90	90	90	%
Tensile strength L/T	EN 12311-1	± 20%	320/220	650/650	480/350	560/420	900/650	1100/900	N/50mm
Elongation L/T	EN 12311-1	± 15%	2/2	4/4	30/45	45/55	50/60	50/60	%
Tear resistance L/T	ASTM D4073-94	± 15%	100/250	375/375	220/350	250/400	360/550	600/700	Ν
Static puncture resistance (concrete)	EN 12730/ UEAtc MOAT27		L2 (7-15)	L2 (7-15)	L3 (15-25)	L3 (15-25)	L3 (15-25)	L4 (≥ 25)	kg
Dynamic puncture resistance (concrete)	EN 12691/ UEAtc MOAT27		I3 (Φ10)	I3 (Φ10)	I3 (Ф8)	I3 (Ф8)	ІЗ (Ф8)	ІЗ (Ф8)	mm
Flexibility to low temperatures	EN 1109	± 5	-20	-20	-20	-20	-20	-20	°C
Water tightness (72h, 2 bar)	UEAtc/EN 1928				Successfully p	assed			
Vapor permeability coefficient	EN 1931	≥	20000	20000	20000	20000	20000	20000	
Heat resistance	EN 1110	≤	110	110	110	110	110	110	°C
Reaction to fire	EN 13501-1	≥	F	F	F	F	F	F	
Dangerous substances				Co	ontains no limeston	e and coal tar			
Dimensional stability L/T	EN 1107-1	≤	-0.1/+0.1	-0.1/+0.1	-0.15/+0.1	-0.15/+0.1	-0.4/+0.3	-0.4/+0.3	%
Thermal conductivity			0.2	0.2	0.2	0.2	0.2	0.2	W/mK

PRODUCT INFORMATION-Technical Data – ESHADIEN ULTRA WHITE

Characteristics	Methods	т	Perfor	nance	Units
			ESHADIEN ULTRA WHITE	ESHASTICK ULTRA WHITE	
Top surface finish			reinforced 3 lamina	ated ultra white PE film	-
Bottom surface finish			torchable PE film	peel off siliconized film	-
Reinforcement			SP polyester	glass fleece	-
Length	EN 1848-1		10	20	m
Width	EN 1848-1		1	1	m
Weight	EN 1849-1	± 10 %	4.0	2.0	kg/m ²
Туре			Elastome	eric (SBS)	-
Softening point	EN 1427	± 10	120	105	°C
Penetration at 25 °C	EN 1426	± 5	33	85	dmm
Tensile strength L/T	EN 12311-1	± 20%	900/650	400/300	N/50mm
Elongation L/T	EN 12311-1	± 15%	40 / 55	5/5	%
Tear resistance L/T	ASTM D4073-94	± 15%	450/580	300/400	Ν
Puncture resistance static	EN 12730/ UEAtc MOAT27		L3 (15-25)	L2 (7-15)	kg
Puncture resistance dynamic	EN 12691/ UEAtc MOAT27		I3 (Φ 8mm)	I3 (Φ 12mm)	-
Cold flexibility	EN 1109	± 3	-20	-25	°C
Flow resistance at elevated temperature	EN 1110	± 10	110	95	°C
Water tightness (72h)	UEAtc/EN 1928		pas	sed	-
Solar Reflectance Index	ASTM E 1980-01	≥	8	7	-
Reaction to Fire	EN 13501-1	≥	F	:	
Dimensional stability (L/T)	EN 1107-1	≤	-0,2 / +0,1	-0,1 / +0,1	%

PRODUCT INFORMATION-Technical Data – ESHAELASTAN & ESHAELASTAN - S

Characteristics	Standard	т			Nominal values			Unit
			Glass Fleece	Glass mat combined with polyester	Nonwoven polyester	Polyester combined with reinforcing glass yarns	Spun Bond Polyester (SP)	
Length	EN 1848-1	±0,02	8 or 10	8 or 10	8 or 10	8 or 10	8 or 10	m
Width	EN 1848-1		1	1	1	1	1	m
Upper surface covering	-		PE film/m	nineral granules/aluminiur	n foil			
Bottom surface covering	-				PE film/Quartz sand			
Thickness	EN 1849-1	±0,2%	2.5-5	2.5-5	2.5-5	2.5-5	2.5-5	mm
Weight	EN 1849-1	±10%	3-6	3-6	3-6	3-6	3-6	kg/m ²
Туре	-				Elastomeric (SBS)			
Softening Point	EN 1427	≥	120			120	120	°C
Penetration at 25 °C	EN 1426	± 5	30	30 30		30	30	dmm
Elastic recovery of the bituminous binder of the membrane	EN 13398	≥	90	90	90	90	90	%
Elastic recovery after the oxidative aging, EN 12607-1	EN 13398	≥	80	80	80	80	80	%
Tensile strength L/T	EN 12311-1	± 20%	320/220	640/600	400/300	540/400	900/650	N/50mm
Elongation L/T	EN 12311-1	± 15%	2/2	4/4	30/45	45/55	50/60	%
Tear resistance L/T	ASTM D4073-94	± 15%	100/250	375/375	200/320	230/380	360/550	N
Static puncture resistance (concrete)	EN 12730/ UEAtc MOAT27		L2 (7-15)	L2 (7-15)	L3 (15-25)	L3 (15-25)	L3 (15-25)	kg
Dynamic puncture resistance (concrete)	EN 12691/ UEAtc MOAT27		l3 (Φ10)	I3 (Φ10)	I3 (Ф8)	I3 (Ф8)	ІЗ (Ф8)	mm
Flexibility to low temperatures	EN 1109	± 5	-15	-15	-15	-15	-15	°C
Water tightness (72h, 2bar)	UEAtc/ EN 1928				Successfully Passed	I		
Vapor permeability coefficient	EN 1931	≥	20000	20000	20000 20000		20000	
Heat resistance	EN 1110	≤	110	110	110 110 110		110	°C
Reaction to fire	EN 13501-1		F	F	F	F	F	
Dimensional stability L/T	EN 1107-1	≤	-0.1/+0.1	-0.1/+0.1	-0.15/+0.1	-0.15/+0.1	-0.4/+0.3	%
Thermal conductivity	-		0.2	0.2	0.2	0.2	0.2	W/mK

PRODUCT INFORMATION-Technical Data – ESHAFIN

Characteristics	Standard	т			Nominal value	S		Unit
			Glass Fleece	Glass mat combined with polyester	Nonwoven polyester	Polyester combined with reinforcing glass yarns	Spun Bond Polyester (SP)	
Length	EN 1849-1		8 or 10	8 or 10	8 or 10	8 or 10	8 or 10	m
Width	EN 1849-1		1	1	1	1	1	m
Upper surface covering	-		PE film/mineral granules/ aluminium foil	PE film/mineral granules/ aluminium foil	PE film/mineral granules/ aluminium foil	PE film/mineral granules/ aluminium foil	PE film/mineral granules/ aluminium foil	
Bottom surface covering	-		PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	PE film/ Quartz sand	
Thickness	EN 1849-1	±0,2	2.5-5	2.5-5	2.5-5	2.5-5	2.5-5	mm
Weight	EN 1849-1	±10%	3-6	3-6	3-6	3-6	3-6	kg/m ²
Туре	-		Elastomeric (SBS)	Elastomeric (SBS)	Elastomeric (SBS)	Elastomeric (SBS)	Elastomeric (SBS)	
Softening Point	EN 1427	≥	110	110	110	110	110	°C
Penetration at 25 °C	EN 1426	± 5	30	30	30	30	30	dmm
Elastic recovery of the bituminous binder of the membrane	EN 13398	≥	80	80	80	80	80	%
Elastic recovery after the oxidative aging, EN 12607-1	EN 13398	≥	70	70	70	70	70	%
Tensile strength L/T	EN 12311-1	± 20%	320/220	600/580	390/290	530/390	900/650	N/50mm
Elongation L/T	EN 12311-1	± 15%	2/2	4/4	30/40	40/50	50/60	%
Tear resistance L/T	ASTM D4073-94	± 15%	100/250	360/360	190/310	220/370	350/550	Ν
Static puncture resistance (concrete)	EN 12730/ UEAtc MOAT27		L2 (7-15)	L2 (7-15)	L3 (15-25)	L3 (15-25)	L3 (15-25)	kg
Dynamic puncture resistance (concrete)	EN 12691/ UEAtc MOAT27		l3 (Φ10)	I3 (Φ10)	I3 (Ф8)	I3 (Ф8)	ΙЗ (Φ8)	mm
Flexibility to low temperatures	EN 1109	± 5	-10	-10	-10	-10	-10	°C
Water tightness (72h)	UEAtc/EN 1928				Successfully Pass	sed		
Vapor permeability coefficient	EN 1931	≥	20000	20000	20000	20000	20000	
Heat resistance	EN 1110	≤	100	100	100	100	100	°C
Reaction to fire	EN 13501-1		F	F	F	F	F	
Dimensional stability L/T	EN 1107-1	≤	-0.1/+0.1	-0.1/+0.1	-0.15/+0.1	-0.15/+0.1	-0.4/+0.3	%
Thermal conductivity			0.2	0.2	0.2	0.2	0.2	W/mK

LCA INFORMATION

Grouping- EPD of multiple products

This EPD is a multi- product EPD as it covers the whole range of bituminous membranes manufactured by Alfa Alfa Energy S.A. For the reflection of the environmental aspects associated with the whole range of membranes, the worst-case approach was followed.

Towards identification of the the worst-case product, the following procedure was applied:

Step 1: Identification of the possible combinations of components to produce the various types of bituminous membranes
Step 2: Identification of the maximum available weights/thicknesses of the various types of bituminous membranes (kg.m2)
Step 3: LCA analysis and extraction of the environmental results of the heavier available products
Step 4: Selection of the worst-case results for each environmental indicator for each of the examined information module(s)

Declared unit

The selected declared unit is **1** m² of bituminous membrane. It is not possible to provide a conversion factor for the correlation of the declared unit to 1 kg of product, as this is an EPD of multiple products based on worst-case approach, and the worst-case results are related to products with various final weighs (kg.m²).

However, in the Environmental results section are provided conversion factors for the correlation of the worst-case results with selected bituminous membranes.

Time representativeness

The data used are based on one-year average data, from January 2022 to December 2022.

Geographical Scope

Europe

System Boundaries

This LCA study follows a "cradle-to-gate" approach with modules C & D and additional modules A4, A5.

Databases Used: Ecoinvent 3.8.1 & Professional 2021 **Software Used:** LCA for experts (GaBi)

LCA INFORMATION

	Pro	oduct Sta	ige		tion process tage				Use St	age				End-of-l	ife stage		Resource Recovery stage
	Raw Material Supply	Transport	Manufacturing	Transport	Construction Installation	use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	De-construction demolition	Transport	Waste Processing	Disposal	Reuse-Recovery-Recycling potential
Module	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Modules Declared	х	х	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	х	х	Х	х	x
Geography	EU-28	EU-28	GR	EU-28	EU-28	-	-	-	-	-	-	-	EU-28	EU-28	EU-28	EU-28	EU-28
Specific Data used		4.36%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation- Products	prod v	WP varia lucts fron vorst-cas 2 % - 50.3	n the e	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation-sites		0%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
				EP	D Type			S	SOFT		RE			TABAS	E		
	we know how since 1962			Mult	iple Products			LC	A for Exp	erts Ver 3.014	sion			ent Version			18

DESCRIPTION OF THE EXAMINED MODULES

Module A1

In this Module the emissions related to the following processes are accounted for:

- Production of raw materials; For each product, a different combination of raw materials is introduced; hence inputs are adjusted to each product examined.
- Production of packaging materials; The consumption of packaging materials is irrelevant to the type of membrane produced; hence the same set of results are applicable to every LCA.
- Production of electricity; The electricity grid mix of Greece for the reference period of 2023 was modelled, based on the latest available report published from the Greek administrator of renewable energy, during the initiation of the project.
- Production of LPG; Generic data for the production of LPG in the Greek region were utilized.

All material and energy inputs are included.

Module A2

In this Module the emissions related to the transportation of raw and packaging materials to the plant are accounted for. No primary data were retrieved from the suppliers. Means of transportation and km covered were calculated based on actual distances. Transportations are represented by generic datasets.

Module A3

Module A3 the covers the environmental impacts associated with the manufacturing processes of APP and SBS bituminous membranes, Membranes

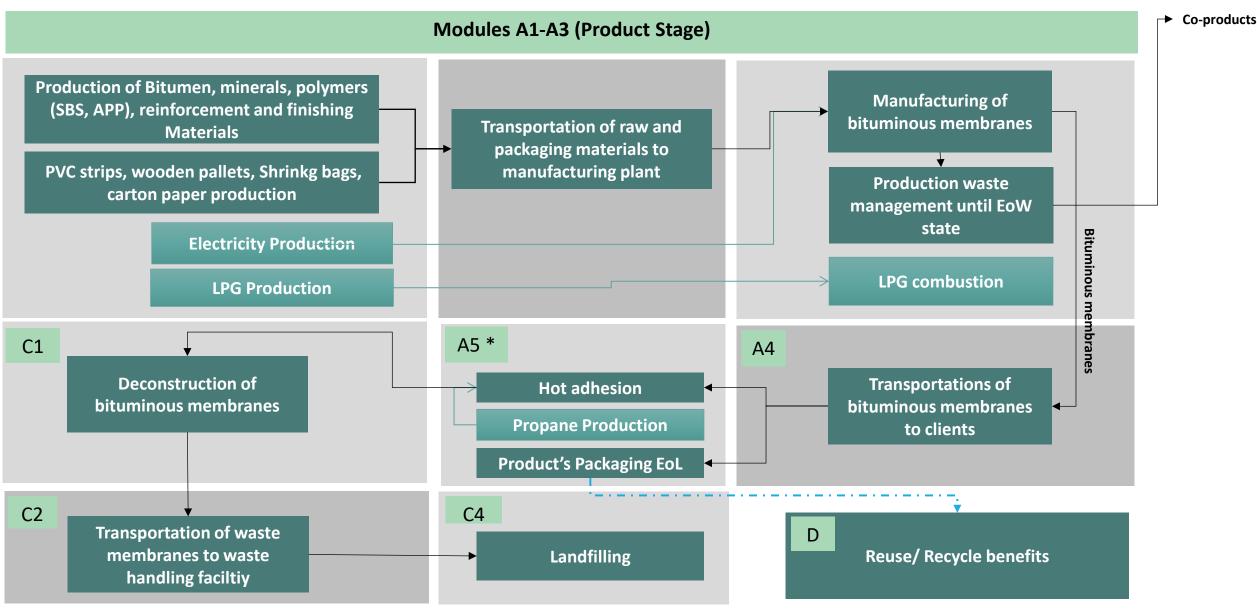
Module A4

Module A4 includes the emissions related to the following processes are accounted for: transport of Bituminous membranes (APP & SBS) to clients/Building sites. Average distances to clients have been considered for trucks and vessels.

Module A5

Module A5 addresses the environmental impacts related to the use of propane cylinders and torches during the application of SBS and APP bituminous membranes at customer sites. Propane is employed as a fuel source to provide the necessary heat for melting the surfaces, ensuring effective adhesion of the membranes.

Modules C1-C4


- Module C1 includes Processes related to the deconstruction of bituminous membranes. Particularly the production of the fuel utilized by the deconstruction work machine is accounted.
- Module C2 includes the transportation of deconstructed bituminous membranes to the waste handling facility is considered. Assumptions were made for the mean distance of construction sites from waste handling facilities and the means of transportation.
- Module C3 is neutral for all the examined products, bituminous membranes are not recovered or recycled.
- Module C4 includes, emissions related to the landfilling of bituminous membranes are declared.

Module D

In this module, the net benefits from recycling and recovery of product's packaging wastes are considered. Specifically, the benefits of the reuse of pallets and the use of recovered PVC strips, PE shrink film and carton paper as secondary materials

SYSTEM DIAGRAM

* Module A5 is different for Eshastick which is cold-self-adhered

This Environmental Product Declaration (EPD) serves as a multiple product EPD, encompassing the entire range of bituminous membranes manufactured by Alfa Alfa Energy S.A. To capture the environmental aspects associated with the full life cycle of these membranes, a worst-case scenario approach was employed, as mandated by the criteria set forth in PCR 2019:14 for Construction Products (version 1.3.4).

This approach was adopted due to significant variations in the environmental results among the examined products. As a result, an average content declaration is provided. Additionally, this EPD incorporates an evaluation of the Candidate List of Substances of Very High Concern (SVHC) as defined by the European Chemicals Agency (ECHA). Content declaration table displaying the raw materials utilized in the production of APP and SBS bituminous membranes.

A thorough inventory of these raw materials was conducted to identify any substances that may be listed on the Candidate List of Substances of Very High Concern. Each raw material was evaluated against the current SVHC list to detect any potential substances of concern, following the concentration limits specified by REACH regulations. Our assessment indicates that the materials used in the production of APP and SBS bituminous membranes do not contain any SVHCs at concentrations exceeding the thresholds established by REACH.

Content	Declaration
Product Components	Average kg/m ²
Bitumen	1.91E+00
SBS	1.73E-01
APP	1.39E-01
Flux Oil	3.99E-01
Calcium Carbonate	1.90E+00
Reinforcen	nent Materials
Polyester fiber cloth 150g/m ²	1.50E-01
Polyethylene (upper)	3.89E-03
Finish	ing Coats
Polyethylene (bottom)	1.00E-02
Mineral Granules	3.89E-01
Aluminum foil	3.71E-02
Packagir	ng Materials
PVC strips	1.50E-03
Carton Paper (core)	1.95E-02
Wooden Pallets	8.80E-02
PE shrink film	8.00E-03

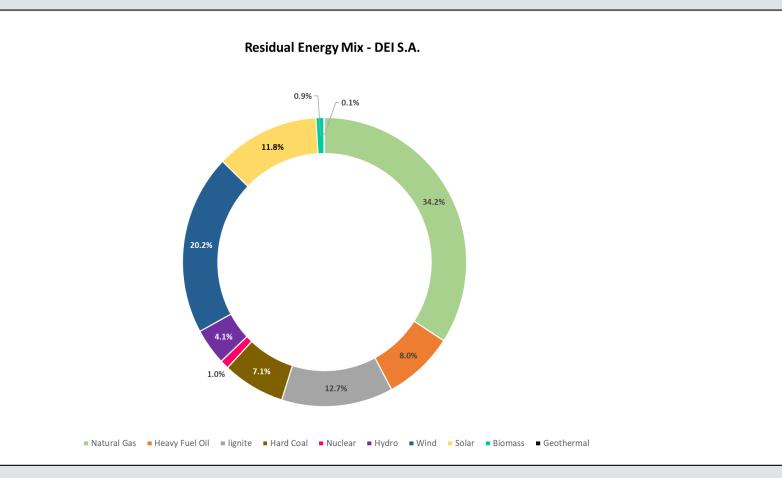
ADDITIONAL LCA INFORMATION – SCENARIOS - ASSUMPTIONS

- Three scenarios based on membrane thicknesses of 4.5, 5 and 6 kg/m² were considered for modules A4 (Transport products to Client), and End of Life (C1 C4)
- An assumption for a mean type of truck used for road transportations was made. The truck is assumed to be a diesel driven, Euro 6, 12-14t gross weight, of 9.3t payload capacity, distance of 400 Km.
- An assumption for a mean type of vessel used for marine transportations was made. The vessel is assumed to be a diesel driven, average ship of 3,500 t payload capacity, distance of 1558 Km.
- The assumption regarding the bulk density of transported products is based on a weighted average derived from the modes of transportation used. Specifically, data provided by the company indicates that 11% of the total product is transported by ship, while 89% is transported by truck. This distribution reflects the reliance on different transportation methods to deliver the products, allowing for a more accurate estimation of the overall bulk density. Additionally, the density of the products ranges from 4.5 to 6. This range should be considered in conjunction with the transportation distribution, as it affects the overall bulk density calculation for the transported products.
- Assumptions regarding waste generated from installations indicate that the only types of waste considered are packaging materials. Specifically, the estimated waste is as follows: wooden pallets contribute 0.088 kg, carton paper accounts for 0.0195 kg, PVC strips make up 0.0015 kg, and PE shrink film adds 0.008 kg. These values reflect the packaging waste produced during installations.
- For the transportation of the final bituminous membranes to the clients, the transportation routes were assumed based on the location. In particular, whenever the final destination is an island marine transportation was assumed. Elsewhere, road transportation was assumed, based also on the fact that road transportations are related with higher environmental impacts (worst case approach).
- Transportation to waste handling facilities for reuse (pallets) recycling or energy recovery. The end-of-waste state is reached at the reception of the waste handling facility
- Assumptions were made for the end-of-life of packaging wastes. Specifically, wooden pallets are assumed to be led for reuse, while all the others for recycling.
- An assumption for the distance of waste handling facilities from construction sites was made. In particular, a distance of 100km was assumed. The same assumption was applied for the distance of the landfilling facility from the site where deconstruction of bitumen occurs.
- The deconstruction of bituminous membrane is considered to occur along with the rest of the building, and as such, the operation of a deconstruction work machine was assumed. The selected work machine is a diesel driven Excavator, of 100kW, which is the most suitable based on the available datasets.
- Situminous membranes are assumed to be led for landfilling as part of the CDW, based on current waste handling situation in Greece.

ADDITIONAL LCA INFORMATION - ALLOCATIONS

- Electricity consumption as calculated by Alfa Alfa Energy was mass allocated to the total production of bituminous mixtures and normalized to the declared unit for each LCA based on the consumption of bituminous mixture for the production of the respective bituminous membranes. This allocation was based on the fact that bituminous mixtures are the only components of the final membranes produced by Alfa Alfa Energy and their production is related with the highest share of electricity consumption. This allocation is also the only possible way to allocate electricity since it was not feasible to allocate directly to the declared unit, due to different weights of the final membranes.
- The consumption of LPG was mass allocated to the total production of bituminous mixtures and normalized to the declared unit for each LCA based on the consumption of bituminous mixture for the production of bituminous membranes.
- The production wastes were mass allocated to the total production of bituminous mixtures, for the reasons outlined in the first bullet.
- Output waste flows identified in Module A3 are allocated as co-products, in accordance with EN 15804 section 6.4.3.2. Since these materials are routed for recycling, they cease to be classified as waste and achieve end-of-waste status within Module A3. This module specifically addresses processes related to the treatment of production waste until they reach this status. In industrial processes, various materials may be produced alongside the intended product, commonly referred to as co-products in business terminology. Within the context of this standard, these terms are considered equivalent. However, it is important to distinguish between co-products and products when allocating environmental aspects and impacts. Ultimately, the key point is that the weight of the waste materials is equivalent to that of the products, reflecting their co-product status in terms of environmental consideration.

There are rare cases where the quality assessment rejects some production outputs as off-specification products. These rejected products are sold for specific applications. The amount of these products is negligible compared to the production capacity of the plant and even though they are allocated as co-products, they are not accounted in the LCA studies.


In-house transportations of work machines are not included in the study.

✤ Infrastructure and capital goods are out of the product system

ENERGY BREAKDOWN - CLIMATE IMPACT

The origin of imported energy, specifically imported electricity, is sourced from the grid. According to data obtained from the Greek Administrator of Renewable Energy and Guarantees of Origin (DAPEEP), the following figure illustrates the energy breakdown of electricity usage in Greece.

Name	Data Source	Environmental Effect GWP Excluding Biogenic (kg CO ₂ eq. /kWh)
Electricity Residual Mix – Greece	DAPEEP	0.5423

EPD of multiple products, based on worst-case results. The system boundaries on manufacturing of infrastructure/capital goods and for employees are excluded in the product system. The estimated impact results from EPD report are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks.

Note: additional environmental impact data may be presented

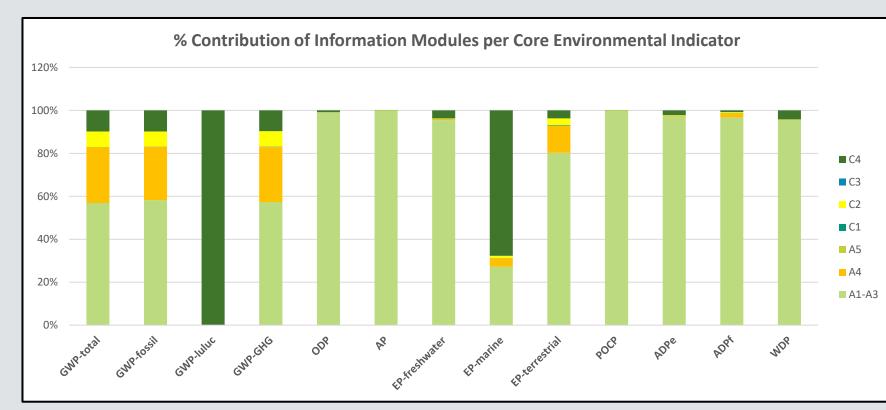
ENVIRONMENTAL PERFORMANCE INDICATORS

Potential Environmental Impacts/ 1 m ² OF BITUMINOUS MEMBRANES "WORST-CASE APPROACH"													
			A1-A3	A4	A5	C1	C2	C3	C4	D			
Core Environmental Impa	ct Indicators	Unit								(À)			
Global Warming Potential – total	GWP-total	kg CO ₂ eq.	5.22E+00	2.37E+00	2.17E-02	3.75E-03	6.62E-01	0.00E+00	8.99E-01	7.93E-02			
Global Warming Potential – fossil	GWP-fossil	kg CO ₂ eq.	5.33E+00	2.27E+00	2.08E-02	3.88E-03	6.33E-01	0.00E+00	8.98E-01	-7.76E-02			
Global Warming Potential – biogenic	GWP-biogenic	kg CO ₂ eq.	0.00E+00										
Global Warming Potential – land use and land use change	GWP-luluc	kg CO ₂ eq.	4.20E-03	2.25E-03	3.91E-05	3.05E-05	5.98E-04	0.00E+00	7.40E+02	-3.07E-04			
Global Warming Potential – GHG ^[1]	GWP-GHG	kg CO ₂ eq.	5.32E+00	2.37E+00	2.17E-02	3.75E-03	6.62E-01	0.00E+00	8.99E-01	7.93E-02			
Ozone Depletion Potential	ODP	kg CFC 11 eq.	2.40E-06	5.33E-17	9.53E-10	7.37E-19	1.44E-17	0.00E+00	1.93E-08	-5.61E-09			
Acidification Potential	AP	Mole of H+ eq.	1.30E+02	1.31E-03	4.50E-05	1.87E-05	3.29E-04	0.00E+00	9.61E-04	-4.43E-04			
Eutrophication Potential – freshwater	EP-freshwater	kg P eq.	2.84E-04	8.18E-07	1.58E-06	1.11E-08	2.17E-07	0.00E+00	1.08E-05	-2.38E-05			
Eutrophication Potential – marine	EP-marine	kg N eq.	4.24E-03	6.10E-04	1.59E-05	8.77E-06	1.52E-04	0.00E+00	1.06E-02	-1.01E-04			
Eutrophication Potential – terrestrial	EP-terrestrial	mol N eq.	4.47E-02	6.93E-03	1.61E-04	9.71E-05	1.73E-03	0.00E+00	2.05E-03	-9.80E-04			
Photochemical Oxidant Formation Potential	РОСР	kg NMVOC eq.	9.95E+02	1.54E-03	4.38E-05	2.46E-05	3.23E-04	0.00E+00	8.09E-04	-3.13E-04			
Abiotic Depletion Potential – elements ^[2]	ADPe	kg Sb eq.	9.98E-06	2.42E-08	3.27E-08	3.31E-10	6.48E-09	0.00E+00	2.23E-07	-3.43E-07			
Abiotic Depletion Potential. fossil resources ^[2]	ADPf	MJ net calorific value	1.91E+02	3.67E+00	1.39E-01	4.97E-02	9.74E-01	0.00E+00	1.56E+00	-1.71E+00			
Water Deprivation Potential ^[2]	WDP	m3 world eq. deprived	1.59E+00	2.55E-03	1.54E-03	3.46E-05	6.79E-04	0.00E+00	6.88E-02	-6.34E-02			

[2] The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

ENVIRONMENTAL PERFORMANCE INDICATORS

		Pot	ential Environmental Imp	pacts/ 1 m ² OF Bl	TUMINOUS MEMB	RANES "WORST-CA	SE APPROACH"			
			A1-A3	A4	A5	C1	C2	C3	C4	D
Resource Use Indic	ators	Unit								(2)
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	PERE	MJ. net calorific value	1.43E+01	2.11E-01	6.59E-03	2.86E-03	5.61E-02	0.00E+00	3.33E-02	-2.35E+00
Use of renewable primary energy resources used as raw materials	PERM	MJ. net calorific value	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total use of renewable primary energy resources	PERT	MJ. net calorific value	1.43E+01	2.11E-01	6.59E-03	2.86E-03	5.61E-02	0.00E+00	3.33E-02	-2.35E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	PENRE	MJ. net calorific value	1.91E+02	3.68E+00	1.39E-01	4.99E-02	9.78E-01	0.00E+00	1.56E+00	-1.71E+00
Use of non-renewable primary energy resources used as raw materials	PENRM	MJ. net calorific value	2.35E-01	0.00E+00	1.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total use of non- renewable primary energy resources	PENRT	MJ. net calorific value	1.91E+02	3.68E+00	1.39E-01	4.99E-02	9.78E-01	0.00E+00	1.56E+00	-1.71E+00


ENVIRONMENTAL PERFORMANCE INDICATORS

		Potential Enviro	nmental Impacts/ 1 m ²		IEMBRANES "WORST	-CASE APPROAC	Η"		
			A1-A3	A4	A5	C1	C2	C3	C4
Waste Indicators		Unit							
Hazardous waste disposed	HWD	kg	9.21E-09	1.94E-10	1.07E-12	2.63E-12	5.15E-11	0.00E+00	0.00E+00
Non-hazardous waste disposed	NHWD	kg	4.42E-01	5.76E-04	3.78E-06	7.83E-06	1.53E-04	0.00E+00	0.00E+00
Radioactive waste disposed	RWD	kg	1.57E-03	6.56E-06	4.31E-08	9.05E-08	1.77E-06	0.00E+00	0.00E+00
Output Flows		Unit							
Components for re-use	CRU	kg	0.00E+00	0.00E+00	8.80E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Material for recycling	MFR	kg	0.00E+00	0.00E+00	2.00E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for energy recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy	EE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Additional Environmental Impact In	dicators	Unit							
Particulate matter emissions	PM	Disease incidence	2.24E-07	1.01E-08	5.82E-10	2.13E-10	1.58E-09	0.00E+00	1.07E-08
Ionizing radiation human ^[3]	IRP	kBq U235 eq.	3.64E-01	9.58E-04	7.06E-04	1.32E-05	2.59E-04	0.00E+00	8.02E-03
Eco-toxicity. Freshwater ^[2]	ETP-fw	CTUe	1.31E+02	2.72E+00	1.33E-01	3.69E-02	7.23E-01	0.00E+00	2.02E+00
Human toxicity. cancer effects ^[2]	HTP-c	CTUh	5.35E-09	5.52E-11	7.91E-12	7.46E-13	1.47E-11	0.00E+00	4.83E-11
Human toxicity. non-cancer effects ^[2]	HTP-nc	CTUh	2.88E+00	3.27E-09	1.17E-10	4.48E-11	8.58E-10	0.00E+00	7.69E-10
Land use related impacts/Soil quality ^[2]	SQP	dimensionless	2.00E+01	1.26E+00	8.40E-02	1.71E-02	3.35E-01	0.00E+00	3.56E+00

[2] The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

[3] This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured

INTERPRETATION – DOMINANCE ANALYSIS

The following diagram illustrates the impacts of the assessed modules (A1-A3, A4-A5 & C1-C4) on key environmental indicators.

• Contribution of Modules A1-A3 ranges from 27% regarding Eutrophication potential - marine (EP-marine) to 100% Acidification Potential (AP) and Photochemical Oxidant Formation Potential (POCP). Modules A1-A3 contain the production process of Bituminous Membranes.

• The contribution of the remaining modules is considered minimal except for indicators GWP – Total, GWP – Fossil & GWP Luluc. More specifically, Module A4 contributes less than 26% in the environmental impacts GWP - Total & GWP – Fossil. Module C4, predominantly influence GWP LULUC (GWP - LULUC) and Eutrophication potential - marine (EP-marine) where their contribution exceed 100% and 68% respectively.

DOMINANCE ANALYSIS

	Modules Contribut	tion to Environmental Per	formance Indicators - 1	m ² OF BITUMINOUS MI	MBRANES "WORST-CA	SE APPROACH"		
		A1-A3	A4	A5	C1	C2	C3	C4
Core Environmental Impact	Indicators							
Global Warming Potential – total	GWP-total	57%	26%	0%	0%	7%	0%	10%
Global Warming Potential – fossil	GWP-fossil	58%	25%	0%	0%	7%	0%	10%
Global Warming Potential – biogenic	GWP-biogenic	-	-	-	-	-	-	-
Global Warming Potential – land use and land use change	GWP-luluc	0%	0%	0%	0%	0%	0%	100%
Global Warming Potential – GHG ^[1]	GWP-GHG	57%	26%	0%	0%	7%	0%	10%
Ozone Depletion Potential	ODP	99%	0%	0%	0%	0%	0%	1%
Acidification Potential	AP	100%	0%	0%	0%	0%	0%	0%
Eutrophication Potential – freshwater	EP-freshwater	95%	0%	1%	0%	0%	0%	4%
Eutrophication Potential – marine	EP-marine	27%	4%	0%	0%	1%	0%	68%
Eutrophication Potential – terrestrial	EP-terrestrial	80%	12%	0%	0%	3%	0%	4%
Photochemical Oxidant Formation Potential	РОСР	100%	0%	0%	0%	0%	0%	0%
Abiotic Depletion Potential – elements ^[2]	ADPe	97%	0%	0%	0%	0%	0%	2%
Abiotic Depletion Potential. fossil resources ^[2]	ADPf	97%	2%	0%	0%	0%	0%	1%
Water Deprivation Potential ^[2]	WDP	96%	0%	0%	0%	0%	0%	4%

[1] This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO₂ is set to zero.

[2] The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

[3] This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured

DOMINANCE ANALYSIS

	Modules Contribution to Environmental Performance Indicators - 1 m ² OF BITUMINOUS MEMBRANES "WORST-CASE APPROACH"													
		A1-A3	A4	A5	C1	C2	C3	C4						
Resource Use Indicators														
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	PERE	98%	1%	0%	0%	0%	0%	0%						
Use of renewable primary energy resources used as raw materials	PERM	-	-	-	-	-	-	-						
Total use of renewable primary energy resources	PERT	98%	1%	0%	0%	0%	0%	0%						
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	PENRE	97%	2%	0%	0%	0%	0%	1%						
Use of non-renewable primary energy resources used as raw materials	PENRM	100%	0%	0%	0%	0%	0%	0%						
Total use of non-renewable primary energy resources	PENRT	97%	2%	0%	0%	0%	0%	1%						

DOMINANCE ANALYSIS

Module	es Contribution	to Environmental Perfor	mance Indicators - 1	m ² OF BITUMINOU	S MEMBRANES "WO	DRST-CASE APPROACH"		
		A1-A3	A4	A5	C1	C2	C3	C4
Waste Indicators								
Hazardous waste disposed	HWD	97%	2%	0%	0%	1%	0%	0%
Non-hazardous waste disposed	NHWD	100%	0%	0%	0%	0%	0%	0%
Radioactive waste disposed	RWD	99%	0%	0%	0%	0%	0%	0%
Output Flows								
Components for re-use	CRU	-	-	-	-	-	-	-
Material for recycling	MFR	-	-	-	-	-	-	-
Materials for energy recovery	MER	-	-	-	-	-	-	-
Exported energy	EE	-	-	-	-	-	-	-
Additional Environmental Impact Indica	tors							
Particulate matter emissions	PM	91%	4%	0%	0%	1%	0%	4%
Ionizing radiation human ^[3]	IRP	97%	0%	0%	0%	0%	0%	2%
Eco-toxicity. Freshwater ^[2]	ETP-fw	96%	2%	0%	0%	1%	0%	1%
Human toxicity. cancer effects ^[2]	HTP-c	98%	1%	0%	0%	0%	0%	1%
Human toxicity. non-cancer effects ^[2]	HTP-nc	100%	0%	0%	0%	0%	0%	0%
Land use related impacts/Soil quality ^[2]	SQP	79%	5%	0%	0%	1%	0%	14%

[2] The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

[3] This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured

IMPACT INDICATORS VARIATIONS PER EXAMINED PRODUCT

						Varianc	e of the ex	amined p	roducts from	the declare	ed for Module	es A-C						
ENVIRONMENTAL	EshaDIEN	EshaDIEN	EshaDIEN	Esha ELASTAN	Esha ELASTAN	Esha ELASTAN	EshaFIN	EshaFIN	EshaFIN	Esha STICK	Esha STICK	Esha STICK	Esha GUM	Esha GUM	Esha PROOF	Esha PROOF	Esha DURO	Esha DURO
IMPACTS	PP	PG	P-AL	PP	PG	P-AL	PP	PG	P-AL	РР	PG	P-AL	РР	PG	PP	PG	РР	PG
	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	5,00	5,00	5,00	5,00	5,00
Climate Change - Total	-20%	-10%	-12%	-27%	-16%	-18%	-32%	-23%	-22%	-26%	-12%	-16%	-23%	-26%	-28%	-31%	-35%	-36%
Climate Change - Fossil	-20%	-10%	-12%	-27%	-16%	-17%	-32%	-23%	-22%	-26%	-12%	-16%	-22%	-26%	-27%	-30%	-34%	-36%
Climate Change - Biogenic	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Climate Change - Land Use and Land Use Change	-17%	0%	-25%	-17%	0%	-25%	-17%	0%	-25%	-17%	0%	-25%	-17%	-17%	-17%	-17%	-17%	-17%
Global Warming Potential- GWP-GHG (Total-biogenic)	-20%	-10%	-12%	-27%	-16%	-17%	-32%	-23%	-22%	-26%	-11%	-16%	-22%	-26%	-28%	-30%	-34%	-35%
Ozone Depletion	-1%	0%	-1%	-1%	0%	-1%	-1%	0%	-1%	-2%	0%	-2%	-1%	-1%	-1%	-1%	-1%	-1%
Acidification	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Eutrophication, fresh water	-12%	-7%	-14%	-12%	-8%	-14%	-13%	-8%	-15%	-20%	-7%	-19%	-1%	-3%	-4%	-6%	-9%	-10%
Eutrophication, marine	-20%	-4%	-21%	-22%	-7%	-23%	-24%	-9%	-25%	-22%	-5%	-23%	-21%	-20%	-23%	-22%	-25%	-24%
Eutrophication, terrestrial	-26%	-12%	-13%	-34%	-20%	-20%	-41%	-29%	-26%	-33%	-15%	-19%	-30%	-27%	-36%	-33%	-44%	-39%
Photochemical Ozone Formation, human health	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Resource use, mineral and metals	-6%	0%	-8%	-7%	-1%	-9%	-8%	-2%	-10%	-16%	0%	-15%	-7%	-8%	-8%	-8%	-9%	-9%
Resource use, fossils	-3%	0%	-5%	-25%	-22%	-23%	-35%	-32%	-32%	-7%	-1%	-8%	-7%	-21%	-23%	-34%	-42%	-49%
Water Use	-58%	-57%	-47%	-59%	-58%	-48%	-61%	-64%	-50%	-60%	-58%	-48%	-1%	-15%	-19%	-30%	-43%	-49%

IMPACT INDICATORS VARIATIONS PER EXAMINED PRODUCT

						Variance of	of the exa	mined pro	ducts fron	n the decla	ed for Modu	les A-C						
ENERGY USE	EshaDIEN	EshaDIEN	EshaDIEN	Esha ELASTAN	Esha ELASTAN	Esha ELASTAN	EshaFIN	EshaFIN	EshaFIN	Esha STICK	Esha STICK	Esha STICK	Esha GUM	Esha GUM	Esha PROOF	Esha PROOF	Esha DURO	Esha DURO
	РР	PG	P-AI	РР	PG	P-Al	PP	PG	P-Al	PP	PG	P-Al	РР	PG	РР	PG	РР	PG
	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	5,00	5,00	5,00	5,00	5,00
Use of renewable primary energy excluding renewable primary energy	-58%	-56%	-1%	-60%	-58%	-3%	-63%	-68%	-6%	-60%	-57%	-2%	-61%	-62%	-62%	-65%	-64%	-65%
resources used as raw materials																		
Total use of renewable primary energy resources	-58%	-56%	-1%	-60%	-58%	-3%	-63%	-68%	-6%	-60%	-57%	-2%	-61%	-62%	-62%	-65%	-64%	-65%
Use of non- renewable primary energy excluding non- renewable primary energy resources used as raw materials	-3%	0%	-5%	-25%	-22%	-23%	-35%	-32%	-32%	-7%	-1%	-8%	-7%	-22%	-23%	-34%	-42%	-49%
Use of non- renewable primary energy resources used as raw materials	-100%	-100%	-100%	-100%	-100%	-100%	-100%	-100%	-100%	-100%	-100%	-100%	0%	-20%	-28%	-43%	-68%	-74%
Total use of non- renewable primary energy resources	-3%	0%	-5%	-25%	-22%	-23%	-35%	-32%	-32%	-7%	-1%	-8%	-7%	-21%	-22%	-34%	-42%	-49%

35

IMPACT INDICATORS VARIATIONS PER EXAMINED PRODUCT

	Variance of the examined products from the declared for Modules A-C																	
OUTPUT	EshaDIEN	EshaDIEN	EshaDIEN	Esha ELASTAN	Esha ELASTAN	Esha ELASTAN	EshaFIN	EshaFIN	EshaFIN	Esha STICK	Esha STICK	Esha STICK	Esha GUM	Esha GUM	Esha PROOF	Esha PROOF	Esha DURO	Esha DURO
FLOWS	РР	PG	P-Al	РР	PG	P-Al	РР	PG	P-Al	РР	PG	P-Al	РР	PG	PP	PG	PP	PG
	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	5,00	5,00	5,00	5,00	5,00
Components for re-use	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Material for recycling	0%	0%	-8%	0%	0%	-8%	0%	0%	-8%	0%	0%	-8%	0%	-11%	0%	-11%	0%	-11%
Materials for energy revovery	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-
Exported energy, electricity	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Exported energy, thermal	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-

	Variance of the examined products from the declared for Modules A-C																	
ADDITIONAL ENVIRONMENTAL	EshaDIEN	EshaDIEN	EshaDIEN	Esha ELASTAN	Esha ELASTAN	Esha ELASTAN	EshaFIN	EshaFIN	EshaFIN	Esha STICK	Esha STICK	Esha STICK	Esha GUM	Esha GUM	Esha PROOF	Esha PROOF	Esha DURO	Esha DURO
IMPACTS	РР	PG	P-Al	РР	PG	P-Al	РР	PG	P-Al	РР	PG	P-Al	РР	PG	PP	PG	PP	PG
	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	6,00	4,50	5,00	5,00	5,00	5,00	5,00	5,00
Particulate Matter emissions	-37%	-24%	-13%	-41%	-27%	-16%	-45%	-32%	-20%	-44%	-26%	-18%	-36%	-32%	-40%	-36%	-46%	-40%
lonizing radiation human	-65%	-64%	-1%	-69%	-67%	-4%	-72%	-71%	-7%	-68%	-65%	-3%	-65%	-68%	-69%	-71%	-73%	-74%
Eco-toxicity, freshwater	-4%	-1%	-10%	-25%	-21%	-28%	-33%	-30%	-35%	-8%	0%	-13%	-21%	-32%	-31%	-40%	-43%	-49%
Human toxicity, cancer effects	-9%	-7%	-1%	-21%	-19%	-11%	-28%	-26%	-17%	-14%	-8%	-4%	-27%	-31%	-31%	-35%	-37%	-39%
Human toxicity, non- cancer effects	0%	-50%	-50%	0%	-50%	-50%	0%	-50%	-50%	0%	-50%	-50%	0%	-50%	0%	-50%	0%	-50%
Land use related impacts/Soil quality	-10%	-4%	-7%	-12%	-6%	-9%	-15%	-10%	-11%	-13%	-6%	-9%	-15%	-14%	-15%	-15%	-17%	-16%

IMPACT INDICATORS VARIATIONS EXTREME POINTS OF EXAMINED PRODUCTS

Min & Max of the examined products for Modules A-C							
Core Environmental Impact	MIN	ΜΑΧ					
Global Warming Potential – total	GWP-total	-36%	-10%				
Global Warming Potential – fossil	GWP-fossil	-36%	-10%				
Global Warming Potential – biogenic	GWP-biogenic	0%	0%				
Global Warming Potential – land use and land use change	GWP-luluc	-25%	0%				
Global Warming Potential – GHG	GWP-GHG	-35%	-10%				
Ozone Depletion Potential	ODP	-2%	0%				
Acidification Potential	AP	0%	0%				
Eutrophication Potential – freshwater	EP-freshwater	-20%	-1%				
Eutrophication Potential – marine	EP-marine	-25%	-4%				
Eutrophication Potential – terrestrial	EP-terrestrial	-44%	-12%				
Photochemical Oxidant Formation Potential	РОСР	0%	0%				
Abiotic Depletion Potential – elements ^[2]	ADPe	-16%	0%				
Abiotic Depletion Potential. fossil resources ^[2]	ADPf	-49%	0%				
Water Deprivation Potential ^[2]	WDP	-64%	-1%				

IMPACT INDICATORS VARIATIONS EXTREME POINTS OF EXAMINED PRODUCTS

Min & Max of the examined products for Modules A-C								
Energy Use Indicators		MIN	ΜΑΧ					
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	PERE	-68%	-1%					
Use of renewable primary energy resources used as raw materials	PERM	0%	0%					
Total use of renewable primary energy resources	PERT	-68%	-1%					
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	PENRE	-49%	0%					
Use of non-renewable primary energy resources used as raw materials	PENRM	-100%	0%					
Total use of non-renewable primary energy resources	PENRT	-49%	0%					
Use of net fresh water	FW	-60%	-1%					
Waste Indicators		MIN	МАХ					
Hazardous waste disposed	HWD	-65%	-1%					
Non-hazardous waste disposed	NHWD	-98%	0%					
Radioactive waste disposed	RWD	-93%	0%					
Output Flow Indicators		MIN	МАХ					
Components for re-use	CRU	0%	0%					
Material for recycling	MFR	-11%	0%					
Materials for energy recovery	MER	0%	0%					
Exported energy	EE	0%	0%					

IMPACT INDICATORS VARIATIONS EXTREME POINTS OF EXAMINED PRODUCTS

Min & Max of the examined products for Modules A-C								
npacts	MIN	МАХ						
PM	-46%	-13%						
IRP	-74%	-1%						
ETP-fw	-49%	0%						
HTP-c	-39%	-1%						
HTP-nc	-50%	0%						
SQP	-17%	-4%						
	npacts PM IRP ETP-fw HTP-c HTP-nc	mpacts MIN PM -46% IRP -74% ETP-fw -49% HTP-c -39% HTP-nc -50%						

This report are subject to several limitations and uncertainties, and caution should be taken when using the results for comparison or making commitments based on them. The results are only informational for the analyzed Bituminous Membranes modules in this report and referenced year and may not be representative of other Bituminous Membranes modules or production processes outside the studied scope.

The indicator lonising radiation deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

The use of the results of modules A1-A3 (A1-A5 for services) without considering the results of module C is discouraged

REFERENCES

- Ecoinvent/ Ecoinvent Centre www.Eco-invent.org
- EN 15804:2012+A2:2019/AC 2021 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- International EPD[®] System, PCR 2019:14 Construction Products, version 1.3.4 (EN 15804: A2)
- International EPD® System, General Program Instructions for the International EPD System, version 4.01
- ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and procedures
- ISO 14040:2006 Environmental management Life Cycle assessment Principles and framework, ISO 14044:2006 Environmental management Life Cycle assessment Requirements and guidelines
- ISO 14044:2006 Environmental management Life Cycle assessment Requirements and guidelines
- REACH Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC
- Residual Energy Mix 2023 from Renewable Energy Sources Operator & Guarantees of Origin (DAPEEP SA) https://www.dapeep.gr/dimosieuseis/eguiseis-proeleusis-energeiako/
- Sphera –LCA for experts (GaBi). <u>www.sphera.com</u>
- Thanh Ba Ho. 2018. Evaluation of biodegradability of polystyrene materials in the managed landfill and soil. School of Environmental and Life Sciences Faculty of Science University of Newcastle (UON). New South Wales, Australia.
- The International EPD® System The International EPD System is a programme for type III environmental declarations, maintaining a system to verify and register EPDs as well as keeping a library of EPDs and PCRs in accordance with ISO 14025. www.environdec.com

